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Abstract 

Intensity measurements have been carried out with 
an extended-face single crystal of hexagonal CdS 
using Mo Ka X-radiation at room temperature. The 
Bragg intensities were analysed by using the one- 
particle potential (OPP) within the framework of 
Dawson's [Proc. R. Soc. London Set. A (1967), 298, 
255-263] generalized structure-factor formulation 
with allowance for cubic anharmonic effects. The 
position parameter in the wurtzite structure which is 
not determined by symmetry is evaluated, and its 
dependence on the temperature-factor model used is 
demonstrated. The most reliable determination of this 
position parameter, with allowance for cubic anhar- 
monicity, is 0.37715(8). The observation of sig- 
nificant differences between the intensities of non- 
symmetry-related reflections occurring at the same 
Bragg angle demonstrates the possibility of measuring 
the anharmonicity of thermal vibrations. 

Introduction 

The effects of anharmonic thermal vibrations on the 
intensities of Bragg reflections have been investigated 
using neutrons, X-rays and y-rays in a number of 
structures (see, for example, Willis & Pryor, 1975; 
Tanaka & Marumo, 1983). The studies of anharmon- 
icity in hexagonal structures include those of zinc 
(Albanese, Deriu & Ghezzi, 1976, Merisalo & Larsen, 
1977, 1979; Merisalo, J/irvinen & Kurittu, 1978; 
Kurki-Suonio, Merisalo & Peltonen, 1979; Vah- 
vaselkS., 1980), cadmium (Merisalo, Peljo & Soininen, 
1978; Field, 1982), beryllium (Larsen, Lehmann & 
Merisalo, 1980) and Li3N (Zucker & Schulz, 1982). 
Nizzoli (1976) has discussed anharmonicity in h.c.p. 
crystals generally, as have Mair & Barnea (1975) for 
crystals with the wurtzite structure. Whiteley, Moss 
& Barnea (1977, 1978) have also discussed anharmon- 
icity in wurtzite structures and reported some of the 
consequences of this effect for CdSe. 

In this paper the interpretation of anharmonic 
effects is based on the use of the one-particle potential 
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(OPP) within the framework of Dawson's (1967) gen- 
eralized structure-factor formulation. The constraints 
imposed on the cubic anharmonic parameters, which 
appear in the temperature-factor expression, are those 
discussed by Fakineos, Stevenson & Barnea (1982). 
The choice of these constraints is particularly impor- 
tant if an accurat.e determination of the wurtzite posi- 
tion parameter is desired. 

The consequences of anharmonic thermal vibra- 
tions manifest themselves in a variety of ways, the 
most readily observable being the intensity differences 
which occur between non-symmetry-related reflec- 
tions with the same Bragg angle (Whiteley, Moss & 
Barnea, 1978 - hereafter referred to as WMB), due to 
one of the third-order antisymmetric temperature- 
factor terms. Several of these intensity differences, in 
excess of 10%, are reported in the present work. 

1. Theory 

Cadmium sulphide is a semiconducting material 
which exhibits pyroelectricity. It possesses the non- 
centrosymmetric hexagonal wurtzite structure, for 
which the atomic positions are 

¢d:  0), ½) 

s: u), + u), 

where u (the wurtzite position parameter) is the ratio 
of the distance between adjacent Cd and S atoms 
along the c axis and the lattice parameter c. This 
position parameter is not determined by symmetry 
and is one of the parameters refined in this analysis. 

The generalized structure factor F(S) can be 
expressed [following Dawson (1967)] as 

F(S) = Z fj(S) Tj(S) exp (2~iS.  rj), (1) 
J 

where S is the scattering vector and fj(S) and Tj(S) 
are the atomic scattering factor and temperature fac- 
tor of the j th atom in the unit cell, with position 
vector rj, respectively, fj(S) and Tj(S) represent the 
Fourier transforms of the at-rest atomic charge distri- 
bution pj(r) and the probability density function tj(r), 
respectively. In general, pj(r) and tj(r) may be non- 
centrosymmetric, resulting in the following complex 
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expressions for f~(S) and Tj(S): 

fj(S) =fc, j(S) + ifa.j(S), (2a) 

Tj(S) = L,j(S) + iT~,j(S), (2b) 

where the subscripts c and a refer to the centrosym- 
metric and antisymmetric components, respectively. 

Moss (1977) has determined that in wurtzite struc- 
tures bonding effects are small. We shall, therefore, 
neglect the antisymmetric terms fa, j(S) in this analysis 
and fc, j(S) will represent the free-atom spherical scat- 
tering factor. In the case of X-rays we need to include 
the real and imaginary anomalous-dispersion correc- 
tions (f~ and fj', respectively) in the atomic scattering 
factor, and so (2a) is rewritten as 

£(s )=Lu(s )+  f~ + if;. (3) 

The substitution of (2b) and (3) in (1) will yield the 
familiar expression for the generalized structure fac- 
tor (see Dawson, 1967). 

Mair & Barnea (1975) and WMB have derived 
equivalent expressions for the anharmonic tem- 
perature factor for wurtzite, expanding the OPP as a 
power series (to third order) in the atomic displace- 
ments from appropriate positions (Malt & Wilkins, 
1981) within the restrictions imposed by the local site 
symmetry (3m). Fakineos, Stevenson & Barnea (1982) 
have also derived an equivalent expression, using a 
group-theory approach. The Debye temperature for 
CdS has been reported as 216 K (Cline, Dunegan & 
Henderson, 1967) and so the classical form of the 
OPP temperature factor is valid (Mair & Wilkins, 
1976). 

In the present paper we use the form of the anhar- 
monic temperature factor given by WMB [see 
equation (6) of that paper], in which ten parameters 
can be refined (the conventional hexagonal tem- 
perature parameters B,, and B33 , and the cubic anhar- 
monic parameters/33,3,/3332 and/3337, for each atomic 
species). Any attempt to refine all these parameters 
results in large correlations, unreliable parameter 
values and large e.s.d.'s. The analysis in this paper, 
is, therefore, in terms of the three models described 
by Fakineos, Stevenson & Barnea (1982) [I: /3313 = 

/3332 = / 3 3 3 7 = 0 ;  II: 1/33,3I--1/33321--1/33371; i i i :  1/33.31--0, 
1/33371 = 2'/21/33321]. Model ] i s  harmonic, model II is 
that used by WMB and model III is a more realistic 
set of constraints, based on the use of certain physical 
properties which impose restrictions on the form of 
the OPP. The relative signs for the anharmonic par- 
ameters are given by WMB and Fakineos, Stevenson 
& Barnea (1982). Models II and III involve the refine- 
ment of the four conventional hexagonal temperature 
parameters and one anharmonic parameter (attempts 
to refine separate anharmonic parameters for each 
atomic species resulted in large correlation between 
these parameters). 

2. Experimental 

The extended-face crystal technique (e.g. Mair, 
Prager & Barnea, 1971a, b) was used to measure 
integrated intensities for 118 independent reflections 
with Mo Ka X-radiation at 293 (2)K. The flat face 
of the large CdS single crystal used has been ground, 
etched and polished parallel to the (100) planes. The 
crystal was mounted on a Philips PW1100/20 com- 
puter-controlled four-circle X-ray diffractometer. An 
NaI(TI) scintillation detector was employed in con- 
junction with pulse-height analysis, and measure- 
ments were carried out using o3-20 scans of width 
3°0 starting 1.5°0 below the peak maximum. Back- 
ground was measured from stationary counts at both 
limits of the scan. The rectangular detector aperture 
was 1.5 by 2 °. The Mo Ka radiation was selected by 
a graphite (002) flat-crystal monochromator and then 
passed through an incident-beam collimator of 
0.5 mm diameter. 

Significant multiple-diffraction effects were 
avoided by rotating the crystal about the scattering 
vector of a given reflection, to a position about which 
the Bragg intensities showed no irregularities (Prager, 
1971; Post, 1976). All measurements were carried out 
in two aspects (generally asymmetric) and averaged, 
a procedure which provides an experimental correc- 
tion for absorption (Mair, Prager & Barnea, 1971a). 
The intensities were measured in positions no more 
than 1.5 ° in azimuth from the symmetric aspects. 

The internal consistency ofthe measured integrated 
Bragg intensities was judged by the agreement 
between symmetrically equivalent reflections, each 
having been measured several times. Fig. 1 shows a 
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Fig. I. Histogram of the % deviation in intensity of a reflection 
from the mean value of the set of symmetrically equivalent 
reflections measured, for CdS. The measurements have been 
subdivided into six equal groups according to the magnitudes 
of the structure factors, the smallest being in group 1. The ratio 
of the largest and smallest structure factors is approximately ten. 
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histogram of the % deviation in intensity of a reflec- 
tion from the mean value of the set of equivalent 
reflections measured. The average deviation, for all 
the CdS measurements, was 0.7%. The implications 
of Fig. 1 with regard to the accuracy of extended-face 
crystal measurements of structure factors will be dis- 
cussed elsewhere. We note that almost 80% of the 
data presented in Fig. 1 have deviations of less than 
1% and that the data with deviations above 1% 
consist primarily of those reflections for which count- 
ing statistics are important. 

3. Analysis 

The data set was analysed by a least-squares refine- 
ment program, which uses the IMSL (1975) library 
subroutine ZXSSQ to minimize the difference 
between observed and calculated structure factors. 
The quantity minimized is 

s= z w,(IFo, l - IFc,  l) =, (4) 
i 

where w, is the weight given to (IFo, l-IFc, I), IF,,,I and 
[F~[ being the observed and calculated absolute values 
of the structure factor corresponding to the ith 
observation, respectively. 

The following parameters can be refined: BI~(Cd), 
Bz3(Cd), BI l(S), B33(8), u, the scale factor, the extinc- 
tion parameter r*, two anharmonic parameters (one 
for each atomic species) and the four anomalous- 
dispersion corrections. The two anharmonic param- 
eters can be specified in accordance with the models 
mentioned in § 1. However, attempts to refine the two 
anharmonic parameters produced large correlations 
between them. Consequently, no distinction is made 
in this analysis between the magnitudes of these two 
parameters (with one exception in § 4), i.e. only one 
anharmonic parameter was refined. 

The observed intensities were corrected for 
anisotropic one-phonon thermal diffuse scattering 
(TDS) effects (Kurittu & Merisalo, 1977; Merisalo & 
Kurittu, 1978), before averaging symmetrically 
equivalent reflections. The elastic constants of Berlin- 
court, Jaffe & Shiozawa (1963) were used. The largest 
anisotropies in the TDS correction factors (a)  rep- 
resented approximately 3%. The TDS corrections for 
CdS were found to be quite large (Koto & Schulz, 
1979), the largest correction factor applied being 
29%. As expected, the introduction of the TDS cor- 
rections resulted in an increase in the conventional 
hexagonal temperature parameters, which amounted 
in our case to about 6%. 

The Bragg intensities were then corrected for 
Lorentz and polarization effects, the latter including 
the effect of the monochromator  (Azaroff, 1955), 
which was assumed to follow kinematic theory (see 
also Freeman, Mair & Barnea, 1977). The square roots 

of the corrected intensities were then divided by the 
refined scale factor to yield the ]Foil. 

The kinematic structure factors were calculated 
using the relativistic Hartree-Fock spherical atomic 
scattering factors of Doyle & Turner (1968) and the 
anomalous-dispersion corrections of Cromer & Liber- 
man (1970) (in general, the latter were not refined). 
The lattice parameters used were a = 4.136 and c = 
6.713 ]k (National Bureau of Standards, 1955). The 
secondary-extinction factors, y, were calculated using 
Zachariasen's (1967) theory. The effective domain 
radius r* was refined. The possibility of using other 
models for extinction was not pursued since the 
largest extinction effects caused only a 3% reduction 
of the kinematic intensity (y ~> 0.97). The products of 
the calculated kinematic structure factors and the 
square roots of the extinction factors yielded the IF,.i[. 
Refinements of the data with the most extinguished 
reflections removed showed virtually no change in 
the thermal parameters or u and led us to believe 
that extinction did not affect the results. 

Correlation matrices were calculated in order 
to assess the interactions of the refined parameters 
(Geller, 1961; Rollett, 1965). Hamilton's R factor 
(RH), the goodness-of-fit parameter (GFIT) and the 
e.s.d, for refined parameter values were also calcu- 
lated. 

The weights w~ appearing in (4) were 

w, = [ 2(IFo, I) + -1, 

where o-2(X) is the variance for quantity X. The 
calculation of cr2(lFo~l) involves the inclusion of a 
variety of error sources such as counting statistics, 
population statistics and the estimated error in the 
TDS correction, o-2(]Fc~]) is due to the uncertainty in 
the extinction correction. The correctness of the 
weighting scheme was checked by evaluating GFIT 
in groups of increasing ISI (Rollett, 1965). None of 
the results were found to be crucially dependent on 
the weighting. 

4. The refined value of the u parameter 

The nearest-neighbour environment of each atom in 
3 the ideal wurtzite structure is tetrahedral with u =~ 

and c/a  = (8)1/2. If the structure is not ideal, nearest- 
neighbour atoms will form distorted tetrahedra. The 
change in c/a (from the ideal value) will be accom- 
panied by a change in u. Keffer & Portis (1957) (see 
also Jeffrey, Parry & Mozzi, 1956) have derived 
expressions for u, on the assumption that the bond- 
stretching constants are much larger than the bond- 
bending constants: 

1+~(a/c)2, (5a) //=2, 

and vice versa: 

u=½-(~) l /2a /c .  (5b) 
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Both (5a) and (5b) tend to underestimate the existing 
observed values of u which, with only one exception 
to our knowledge (ZnO; Kihara & Donnay, 1981), 
are based on harmonic refinements of the data. The 
value of u given by (5a) is always closer to the 
observed value and the difference between the two 
has been attributed to anharmonicity by Mair & 
Barnea (1975). 

All the observed values of u known to us are for 
compounds with c/a < (~),/2, with the exception of 
AgI [Burley (1963); u =0.3747 (15)]. If c/a =(8),/2 
both (5a) and (5b) give u =3, and it can be argued 
that in an ideal wurtzite anharmonicity will not affect 
the u parameter because its effect along the c-axis 
bond is exactly compensated by the combined effect 
it has along the other three tetrahedral bonds about 
a given atom. This is demonstrated in the case of AgI, 
which is very close to being an ideal wurtzite and for 
which (5a) gives the observed value of u. When 
c/a> (8),/2 the value of u given by (5b) is greater 
than that given by (5a) and we suggest that both these 
values will be greater than any observed values 
derived from harmonic treatments of the data for 
such compounds,  with the difference still attributable 
to anharmonicity. The sign and magnitude of the 
difference between the predicted and observed (har- 
monic) values of u depend on the forces binding the 
atoms in the solid, with the relative strength of the 
Coulomb interaction and the short-range interactions 
being an important consideration (Mair & Barnea, 
1975). 

O'Keeffe & Hyde (1978) have pointed out that 
compounds which exist in both the wurtzite and zinc 
blende modifications have, for the wurtzite phase, 
c/a~(8) '/2. For compounds which have only the 
wurtzite phase, c/a < (8),/2 (see also Lawaetz, 1972), 
in accord with the lack of polytypism in CdS and 
CdSe for example. 

Stevenson (1983) has reviewed the findings of other 
authors with regard to the values of u and c/a in 
wurtzite structures and has discussed the wide range 
of lattice-parameter values (and in particular c/a 
values) which exist in the literature for CdS, giving 
several justifications for the choice made here. 

Ibers (1959) (see also Busing & Levy, 1964) pointed 
out that the assumption of harmonic thermal vibra- 
tions could lead to erroneous atomic position param- 
eters. If the atoms within a structure are vibrating in 
harmonic potential wells the positions determined by 
the potential minimum and the time-averaged posi- 
tions would coincide. When cubic terms in the dis- 
placements are introduced this may no longer be the 
case because the potential is asymmetric. Mair & 
Wilkins (1981) have recently given theoretical con- 
sideration to atomic position parameters as deter- 
mined by X-ray or neutron diffraction. They discuss 
the difference between atomic positions determined 
from the minimum of the potential and the time- 

averaged or thermodynamic equilibrium positions. 
The two sets of atomic positions differ only if they 
are not completely determined by symmetry. This, 
necessarily, restricts the atomic sites for which such 
a difference can occur to those of a set of ten point 
symmetries, of which 3m (for wurtzite) is a member. 
The closely related zinc blende structure, for example, 
has a point symmetry of ~,3 rn, which is not a member 
of this set. 

In developing the OPP it is possible to expand 
about either set of atomic positions. If the expansion 
is made about the time-averaged positions a first- 
order term does occur, whereas there is no first-order 
term for an expansion about the positions of the 
potential minimum (Mair & Wilkins, 1981). Mair & 
Wilkins have also shown that it is not possible to 
refine simultaneously both for the effect of the 
coefficient of the first-order term in the temperature 
factor and for the equilibrium position. The anhar- 
monic refinements (models II and III) carried out in 
this paper will thus yield atomic positions defining 
the minimum of the potential. (WMB expanded the 
OPP about the time-averaged positions, a choice 
partly dictated by the values of position and thermal 
parameters available. They found, by projection 
analysis, that the first-order term in their temperature 
factor could, in fact, be neglected.) Mair & Wilkins 
(1981) have indicated that a conventional harmonic 
refinement (model I) will yield atomic positions 
which closely approximate the time-averaged posi- 
tions. The size of the difference between the u param- 
eters obtained from model I and models II and III 
will depend on the extent of the anharmonicity, the 
anharmonic model used and the deviation of the 
structure from that of ideal wurtzite. 

Fakineos, Stevenson & Barnea (1982) have given 
the following expression for the expectation value of 
z, the component along the c axis of an atom's dis- 
placement from the corresponding position defined 
by the potential minimum: 

(z)=- B33[(2B,, + 3 B33)/33,3 

- 3 ( B , , -  B33)~337]/647r4kBT, (6) 

where kB is Boltzmann's constant and T is the tem- 
perature. Equation (6) is valid for the four atoms in 
the unit cell and is the same for atoms of the same 
species. If the constraints between the anharmonic 
parameters of model II are substituted in (6) we get 

<z>= +5B,,B331~3nI/64~'4kBT, (7) 

where the "+' is for Cd atoms and the " - '  for S atoms.* 

* The absolute signs of  the anharmonic parameters for CdS can 
be ascertained from refinements using model II or from the predic- 
tions of  model III. 
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From (7) we obtain the following approximation: 

u , , -  u, = 5[B,,(Cd)B33(Cd) 

q- B,,(S)B33(S)]If1332]/64"n'4kBTc, (8)  

where Ux refers to the value of u obtained in model 
X. Clearly, the right-hand-side of (8) is positive and 
so u~ is predicted to be greater than u~ for CdS, in 
contrast to the expectations of Mair & Barnea (1975). 
If the more realistic constraints of model III are 
substituted in (6), along with B~ = B33, which was 
assumed when deriving these constraints, then (z) = 0 
for all atoms and u~t---u~, as discussed earlier in 
connection with (5a) and (5b). Any sizable differen- 
ces between ux and u~  can be attributed to a break- 
down of the assumptions made when deriving the 
constraints (B~I= B33, and that the structure is ideal 
wurtzite). Whether u ~ - u i  is positive or negative is 
determined by the nature of the deviation of the 
structure from the ideal. In accordance with the 
expectations of Mair & Barnea (1975) we would 
expect uwww-u~ to be negative for CdS. 

Table 1 shows the results of the different data 
refinements for CdS.t As mentioned previously, in 
our attempts to refine two anharmonic parameters, 
to distinguish between the atomic species, we encoun- 
tered a large correlation between them. We did, 
however, observe that the anharmonic parameter 
for S was close to zero, with a considerable 
e . s .d .  [ [ /~332[Cd=0"97 (9) x 10 -2° J A -3 and [~3321S = 
0"03 (56) × 10-2° J ~-3 with the constraints of model 
III, cf 1/33321 = 0.88 (6) × 10 -20 J ~-3 when no distinc- 
tion between Cd and S is made]. This observation is 
similar to those made for the halide atoms in CuCI 
(Sakata, Hoshino & Harada,-1974) and CuBr 
(Harada, Suzuki & Hoshino, 1976). Consequently, a 
refinement was carried out with the constraints of 
model III, allowing 1/33321co to vary and constraining 
1/33321s to be zero. This model is denoted III' in Table 
1, and the refined value of 1/33321Cd was 0.97 (7)× 
10 -20 J ~-3 

The other refined parameter values [B~(Cd), 
n 3 3 ( C d )  , B I I ( S )  , B33(5 ) ,  the scale factor and r*] all 
agreed within one e.s.d, for the four models in Table 
1. The refined value of the anharmonic parameter for 
model II was 0.85 (6) × 10-2° J A-3. The largest corre- 
lation coefficients were for the interactions between 
BI~(Cd), the scale factor and r* (Lander & Mueller, 
1970) and these never exceeded 0.89. The largest 
correlation coefficient involving u was 0.28 for inter- 
action with the anharmonic parameter. The ratios 
RH(I ) /R , ( I I )  and RH(II)/RH(III), where RH(X) 
is R ,  for model X, correspond to a rejection of the 

t Inconsequential differences between the results quoted for CdS 
by Fakineos, Stevenson & Barnea (1982) and in this paper are due 
to the symmetrically equivalent reflections having been treated 
separately in the earlier analysis. 

Table 1. The refined values of the CdS u parameter 
for different temperature-factor models 

Model u RH (%) GFIT 

l 0.37748 (13) !. 127 1.635 
II 0.37771 (8) 0.696 1.017 
III 0.37715 (8) 0.665 0.969 
Ill' 0.37725 (8) 0.658 0.959 

appropriate hypotheses at the 0.5% significance level 
(Hamilton, 1965), which is "highly significant" (Hamil- 
ton, 1964). Thus, the results support the use of the 
constraints between the anharmonic parameters 
derived by Fakineos, Stevenson & Barnea (1982), i.e. 
model III. The ratio RH(III)/RH(III') corresponds 
to a rejection of the appropriate hypothesis at the 
25% significance level, which is "not significant'. 

The value of u~ in Table 1 is in excellent agreement 
with the value cited by Mair & Barnea (1975), namely 
0.3775 (3). The value of u~ is, as predicted by (8), 
larger than u~ [u~-u~-~0.00081 according to (8), cf 
0.00023 from Table 1]. The values of u~j and u~v 
reflect, according to (6), the breakdown of the 
approximations made in deriving the constraints for 
model III. Indeed, the CdS structure is not ideal, 
BI I(Cd) and B 3 3 ( C d  ) differ by approximately 4% and 
B~(S) and B33(8 ) differ by approximately 1%; this 
is not serious enough to invalidate model III, but 
does show up as non-zero values of u ~ - u ~  and 
u~iv-u~, the signs of which are in accord with the 
expectations of Mair & Barnea (1975). Fakineos, 
Stevenson & Barnea (1982) have suggested a method 
to obviate the need to make these approximations 
but unfortunately it relies, in part, on the refinement 
of a set of hkO reflections (h, k and ! being the Miller 
indices of a reflection), of which there are too few 
for this CdS data set [the method will be demonstrated 
for CdSe in the following article (Stevenson & Barnea, 
1984)]. The values of u according to (5a) and (5b) 
are 0.3765 and 0.3742, respectively, both of which 
still underestimate u~  and u~v. The value of u predic- 
ted by O'Keeffe & Hyde (1978) [their equation (8) 
with p = -0 .3  l] is 0.3777. The difference between u~  
and ui represents a sum of the differences between 
the time-averaged and potential minimum positions 
for adjacent Cd and S atoms along the c axis of 
0.0022/~ at room temperature. 

5. Consequences of anharmonic thermal vibrations 

WMB have discussed the appearance of certain har- 
monically forbidden reflections due to the anharmon- 
icity of thermal vibrations (i.e. due to one third-order 
antisymmetric temperature-factor term in particular). 
They found that the reliable observation of these 
reflections in CdSe at room temperature was pre- 
cluded by the lack of intensity. We have similar 
experiences with CdS at room temperature; here 
the lack of intensity was accompanied by a large 
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Table 2. The observed and calculated AIR (%) for 
701~531pairs of reflections in CdS, where I is the third 

Miller index 

The calculated values come from a least-squares refinement of  the 
A I R  (A) and from one of  the full refinements discussed in §§ 4 
and 6 (B). 

Observed 

-14.6(I .4)  
2.0(1.4) 
3.3(1.4) 

-9-7 (2.2) 
-13.3(2.2) 

4.2 1.4) 
4.0 1.4) 
3.6 1.4) 
5.4 1.4) 

-9.4 2.4) 
-12.5 2.5) 

5.5 2.3) 
3.9 2.3) 

-10.0 2.4) 
-8.7 2.4) 

5.9 2.5) 
2.7 2.5) 
7.9 2.3) 
7.3(2.3) 

Calculated Calculated 
(A) (B) 

- I 1 . 4  - 9 . 4  

4'5 3"7 
4.6 3-8 

-12"2 -10"I 
-12"1 -10"0 

3"8 3'1 
3'8 3"2 
3-8 3.1 
3"8 3'1 

-12'5 -10-2 
-12"6 -10.3 

4"4 3'7 
4.3 3"6 

-11"4 -9"4 
-11"4 -9 '4  

4.7 3'9 
4.8 3'9 
3'8 3"1 
3"9 3'2 

contribution of TDS from optic modes (Maradudin, 
Montroll & Weiss, 1963). However, such harmoni- 
cally forbidden reflections have been reliably 
observed with X-rays at room temperature for h.c.p. 
zinc (Merisalo, J~irvinen & Kurittu, 1978) and h.c.p. 
cadmium (Merisalo, Peljo & Soininen, 1978). 

WMB also reported on the intensity differences 
which occur, as a result of the presence of one of the 
third-order temperature-factor terms, for non- 
symmetry-related reflections occurring at the same 
Bragg angle. Table 2 shows our experimental values 
of 19 anharmonic intensity ratios (AIR) (WMB), 
together with the calculated values obtained from a 
least-squares refinement in which the weighted sum 
of squared differences between observed and calcu- 
lated AIR was minimized (A). The minimization was 
carried out by varying only the anharmonic param- 
eter, whose refined value was 1.07 (3) × 10-2°J A -3 
(model II). The values of the four conventional 
hexagonal temperature parameters and u were taken 
from the corresponding refinement (model II) of the 
full data set. The e.s.d.'s for the observed AIR in 
Table 2 are based on population and counting statis- 
tics and their squared reciprocals are the weights used 
in the refinement program. The values of GFIT and 
R ,  were 1.107 and 0.263, respectively; the value of 
the latter was large because we were refining ratios. 
TDS and extinction corrections proved to be 
unnecessary, owing to the insensitivity of the AIR to 
such effects, in this case. The calculated values of the 
AIR from the full refinement discussed in §§ 4 and 6 
(model III) are also given in Table 2 (B). 

Since the AIR are zero in the harmonic approxima- 
tion (model I), the results in Table 2 represent irrefu- 

table evidence of anharmonic thermal vibration of 
the Cd and/or  S atoms at room temperature. Refine- 
ment of the AIR in accordance with model III pro- 
duced virtually no changes. This was expected, since 
the intensity differences are due to the temperature- 
factor term containing ~332. Thus the use of model 
I1 for the refinement of CdSe AIR is not without 
some justification (WMB). 

It is also interesting that, for ideal wurtzite (u = 3), 
the Bijvoet ratios for reflections with ! = 4n (where n 
is an integer) are zero in the harmonic approximation 
(remembering that bonding effects can be neglected 
here). The observation of non-zero Bijvoet ratios in 
this family of reflections is then evidence of the non- 
ideal nature of the structure and/or  the presence of 
anharmonicity. 

6. Results 

Table 3 shows the observed and calculated (model 
III) structure factors for CdS after least-squares 
refinement, together with the E,=lOOcr(lFo, I -  
IFc, I)/IFo, and the secondary extinction and TDS 
correction factors. The reflections have Bragg angles 
which range between 21 and 65 ° with Mo Ka radi- 
ation. Table 4 contains the final parameter values 
corresponding to Table 3. Table 5 shows other experi- 
mental determinations of the four conventional 
hexagonal temperature parameters. The temperature 
parameters of Fakineos and Castles are artificially 
reduced, perhaps by 5%, since no TDS corrections 
were made. Allowing for this their values are in rea- 
sonable agreement with those in Table 4, with the 
exception of Fakineos's B33(S ) value. The values of 
Bocchi & Ghezzi (1975) are all appreciably and unac- 
countably larger_ The '  overall" temperature-parameter 
value for CdS (Boos" the weighted average of the four 
conventional hexagonal temperature parameters) is 
1.343 (3) A 2. Hewat's (1970) lattice-dynamical treat- 
ment yields a value of 1-1 A, 2 and the approximation 
given by Stevenson & Harada (1983) [their equation 
(26)] yields 1.29 ,~2 [the value given by Stevenson & 
Harada (1983) contains an error; see Stevenson & 
Harada (1984)]. The value of /~cds calculated using 
equations (3.1) of Hewat (1972) is 1.01 A 2. The elastic 
constants used were those of Berlincourt, Jaffe & 
Shiozawa (1963) and the average value of Wo 2 (where 
too is the zone-centre frequency determined by Raman 
scattering) was calculated using the data of Tell, 
Damen & Porto (1966) and Brafman & Mitra (1968). 

/ 

The e.s.d.'s for the conventional temperature- 
parameter values in Table 4 show that the parameter 
values for S are more difficult to determine than those 
for Cd. This is due to the appreciable difference 
between the scattering powers of the two atomic 
species. The fact that the heavier of the two atomic 
species has the larger temperature parameters is not 
surprising given that we are operating above the 
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Table 3. The observed and calculated (model III) 
structure factors, the E,=  100o'( Fo, -IFcil)/ Fo, I, and 

the extinction and TDS correction factors for CdS 

h k l IFo, I IFc, I E, y a 
2 2 2 34.31 34.26 0.79 0-970 0.044 
2 2 2. 35' 12 34'89 0"65 0"969 0"044 
3 I I 22-97 22'97 0'60 0"986 0"044 
3 l 1" 22-43 22.45 0-59 0'987 0"044 
2 l 5 33"68 33'95 0.64 0-971 0.047 
3 l 3 31"35 31.34 0"63 0.977 0"054 
3 1 ] 31'05 31-01 0"63 0.977 0-054 
4 0 I 19"85 19"86 0"55 0'991 0"058 
4 0 1 19"29 19.37 0"55 0.991 0"058 
2 2 4 18.83 18.68 0.53 0.992 0.058 
2 2 ,i 18"90 18.74 0"53 0-992 0"058 
4 0 3 27.42 27.54 0.71 0"983 0.068 
4 0 .3 26-97 27.22 0-61 0.984 0"068 
3 0 6 25"22 25-36 0"61 0"986 0-070 
3 0 6 24"63 24.77 0.61 0'987 0.069 
3 2 1 17"36 17"30 0"73 0"993 0.071 
3 2 ]" 16"83 16.84 0"53 0.994 0.071 
3 I 5 25.66 25-76 0.59 0"986 0.074 
3 I 5 25 "91 26"03 0' 59 0'985 0'074 
3 2 2 12"53 12'48 0.65 0-997 0.076 
3 2 2 12.80 12.76 0"53 0-996 0"074 
4 1 0 30.81 30.33 0-62 0.980 0.079 
3 2 3 24.45 24.25 1-37 0"988 0.081 
3 2 .~ 24-09 23-96 0"85 0"988 0-082 
4 I 2 22"89 22-92 0"55 0'989 0-085 
4 1 2 23-46 23-45 0"58 0"988 0-085 
3 2 5 20.32 20.26 0'56 0.992 0' 102 
3 2 5 20.51 20.48 0"55 0.991 0.103 
3 I 7 12.57 12.56 0"65 0.997 0'106 
3 1 7 13'03 12'96 0'65 0'997 0"106 
5 0 3 18.92 19-01 0.57 0'993 0'111 
5 0 3 18"72 18.76 0"53 0"993 0" 110 
3 3 2 18"23 18"07 0"53 0-993 0" 114 
3 3 2. 18.70 18"52 0"53 0-993 0.114 
4 I 6 15'70 15.74 0"56 0-995 0.127 
4 1 6 15-31 15'32 0"53 0'995 0'127 
3 2 7 10-11 10-06 0.65 0"998 0.134 
3 2 7 10"40 10"39 0"65 0'998 0-134 
5 I 3 15"23 15"28 0"53 0"995 0-140 
5 1 3 15.07 15"07 0'55 0'995 0"140 
4 2 5 14.36 14"35 0"65 0"996 0.146 
4 2 5 14.50 14-52 0.65 0"996 0"146 
6 0 0 16"88 17.02 0"53 0.994 0"153 
3 3 6 12.54 12"61 0'65 0'997 0"154 
3 3 6 12.21 12.26 0"65 0.997 0.154 
4 3 1 8"58 8"65 0.67 0-999 0.159 
4 3 T 8.34 8.38 0.67 0.999 0" 159 
5 1 5 12"91 12"95 0-93 0.997 0-160 
5 1 5 13.07 13.11 0.79 0.997 0'160 
4 2 6 6"16 6"13 0"89 0.999 0.160 
4 ? g, 5.97 5-96 0.67 0.999 O- 150 
3 2 9 6"73 6"81 0"67 0"999 0"175 
3 2 f) 6"53 6"60 0-67 0'999 0-174 
5 1 7 6"58 6-59 0'78 0'999 0'189 
5 I 7 6"79 6'81 0"67 0"999 0"189 
3 3 8 11.96 12.01 0.83 0.997 0.189 
3 3 8 12.09 11.98 1.11 0.997 0.189 
6 I 3 9-78 9.74 0.65 0.998 0.193 
6 I 3 9.63 9.59 0.65 0.998 0-194 
5 3 0 5.45 5.40 0.89 0.999 0.207 
7 0 0 5.07 5.15 1.03 0.999 0.207 
4 4 2 8.38 8.40 0.67 0.999 0-207 
4 4 2 8.59 8.63 0.75 0.998 0.207 
5 2 6 8.19 8.19 0.67 0'999 0.207 
5 2 6 7.92 7.95 0.67 0.999 0.207 
5 3 I 5.65 5.61 0-67 0.999 0.207 
5 3 1 5.35 5.43 1.21 0.999 0.208 
7 0 l 5.71 5.72 0-67 0-999 0.209 
7 0 T 5.44 5.54 1.32 0.999 0.208 
4 1 l0 8.37 8'33 0.67 0-999 0-204 
4 l 10 8.50 8.55 0.67 0-999 0.205 
6 I 5 8-30 8.31 0.67 0-999 0.21 l 
6 l 5 8.40 8.41 0.98 0.999 0.21 l 
5 3 2 4.13 4.12 1.45 1.000 0.211 
5 3 2 4.26 4-23 1"94 1'000 0'211 
7 0 2 3'94 3"91 1.36 I'000 0"212 
7 0 2 3"99 4"02 1"55 1'000 0"211 
5 3 3 7.86 7.89 0.67 0"999 0-215 
5 3 .3 7.73 7.78 0.67 0.999 0.217 
7 0 3 8"02 8'02 0"67 0"999 0.217 
7 0 3 7.89 7.90 0.67 0"999 0.217 
6 2 3 7.18 7-20 0.68 0.999 0.227 
6 2 3- 7.12 7.09 0.68 0"999 0.227 

Table 3 (cont.) 

h k I IFo, I IF,,I E, y a 
5 3 5 6.78 6.75 0-68 0.999 0.231 
5 3 5- 6"83 6.84 1'26 0-999 0.232 
7 0 5 6'90 6-86 0"68 0"999 0"232 
7 0 5- 7.02 6"94 1-55 0'999 0"232 
6 1 7 4.24 4.26 0"85 1.000 0.234 
6 1 7- 4.38 4.42 0"85 I "000 0.234 
5 3 6 2.94 2-92 0.87 l '000 0.241 
5 3 6- 2.88 2"83 0.87 I'000 0"242 
7 0 6 2-80 2"77 0.87 1'000 0.241 
7 0 6- 2'71 2"69 0"89 1"000 0.241 
4 3 9 3'81 3"60 1"60 I'000 0.243 
4 3 9- 3"54 3"49 1"61 I "000 0"243 
5 4 I 3"75 3"72 1"55 I "000 0"246 
5 4 I- 3"59 3"59 0"85 I "000 0"246 
5 3 7 3.44 3"47 0"86 I'000 0'251 
5 3 7- 3"58 3"60 0"86 1"000 0"252 
7 0 7 3"53 3"54 0"86 1"000 0"251 
7 0 7- 3"65 3"67 0"86 1"000 0"251 
8 0 0 3"29 3"30 0"86 1"000 0'254 
5 3 8 2"82 2"81 1'03 1"000 0"262 
5 3 8- 2"77 2"81 0"87 I'000 0"262 
7 0 8 2"69 2"69 0"87 1"000 0"261 
7 0 8- 2"66 2"68 0"87 1"000 0"261 
5 3 9 2:36 2"34 0"90 I'000 0"271 
5 3 9- 2"25 2"26 0"90 1'000 0"271 
7 0 9 2"43 2"39 0'87 1"000 0"270 
7 0 9- 2"29 2"30 0"93 I "000 0"270 
5 5 2 3"30 3"28 I '29 1 "000 0"279 
5 5 2- 3.41 3"39 0'95 1'000 0 .79 
6 4 5 2.67 2.67 0.87 1-000 0"289 
6 4 5- 2"69 2"71 0.87 l'000 0"284 
5 3 11 2'50 2-52 0.87 1.000 0"282 
5 3 ]-/ 2"48 2.47 0"87 1.000 0"283 
7 0 l I 2"60 2"56 0.87 1"000 0-282 
7 0 i7" 2.57 2.51 1.05 1.000 0.282 

Table 4. The refined parameter values for CdS, using 
model I I I 

B I j (Cd)  1"376 (3) •2 

B33(Cd) 1"430 (5 ) /~2  
BI i (S)  1" 136 (7) A 2 

B33(S) 1"126 (20) /~2  

u 0"37715 (8) 

Scale 8-20 (2) × 10 
r* 5.9 (17) x 102 A 

1J~332[ 0.88 (6) x 10-2° J A -3 

RH 0"665% 

GFIT 0-969 

Table 5. Other experimental values of the conventional 
hexagonal temperature parameters (A 2) for CdS 

A. Fakineos J. Castles 
Bocchi & (private (private 

Ghezzi (1975) communication) communication) 
Bl i ( C d )  1"89 (3) 1"22 1"24 

B33(Cd) 2"25 (3) 1"46 1"28 
B1 i(S)  1.29 (6) I "05 0"99 

B33(S ) 1"53 (6) 0"70 1-01 

Debye temperature (Huiszoon & Groenewegen, 1972) 
and that the unit cell is reasonably large (Scheringer, 
1973). 

The value of the X-ray Debye temperature for CdS 
can be determined from the values of the four conven- 
tional hexagonal temperature parameters in Table 4, 
by using the familiar expression relating the tem- 
perature parameter and the Debye temperature for 
cubic crystals consisting of one kind of atom only 
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(see, for example, Abrahams & Bernstein, 1969). The 
value thus obtained is 187K, cf 216K (Cline, 
Dunegan & Henderson, 1967) and 223 K (Singh & 
Varshni, 1982). These two theoretical values of the 
Debye temperature, calculated from elastic constants, 
do not allow for dispersion. The effects of dispersion 
can be included by lowering the theoretical values by 
a factor (2 In 2) -I/2 (Hewat, 1972" Singh & Varshni, 
1982), to yield 183 and 189 K, in excellent agreement 
with the value obtained in the present case. This 
agreement may, however, be somewhat fortuitous 
because of the optic-mode component in the refined 
values of the conventional hexagonal temperature 
parameters. It is interesting to note that the tem- 
perature parameters of Bocchi & Ghezzi (1975) yield 
a Debye temperature of 157 K, in good accord with 
their own determinations and significantly lower than 
the theoretical values quoted above. 

The value of 1~3321 in Table 4 is consistent with that 
obtained from the corresponding refinement of AIR 
[1 "06 (3) x 10-2° J A-a], as discussed in § 5. This value 
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Fig. 2. (a) The probability density function in the (001) plane for 
a Cd atom at 293 K. The solid lines are anharmonic contours 
and the broken lines are harmonic contours (scaled to 100 units 
at the centre) describing the probability density function pro- 
duced by thermal motion. The harmonic contours are isotropic 
because B 1 i (Cd)= B22(Cd). (b) The atomic arrangement in the 
(001) plane. The small solid circles represent Cd atoms. The 
larger open circles represent S atoms displaced out of the page 
(along the c axis) by u relative to the Cd atoms below them. 
Those pairs of atoms labelled '½' are displaced a further c/2 out 
of the page. The central Cd atom is the one in question. 

can also be compared with the value of []33321 for CdSe 
at room temperature (model III) which is 0.81 (5) x 
10-2°J A -3 (Stevenson & Barnea, 1984). The refined 
value of r* in Table 4 would be considered small by 
most standards. 

Fig. 2(a) [3(a)] demonstrates the effect of anhar- 
monic thermal vibrations on the probability density 
function in the (001)[(110)] plane for a Cd atom. Fig. 
2(b) [3(b)] gives the atomic arrangement in this plane. 
The contours of equal probability are circular in the 
harmonic approximation for the basal plane [Fig. 
2(a)], and are slightly elliptical in Fig. 3(a) because 
of the anisotropy of the conventional hexagonal tem- 
perature parameters [B, I (Cd)#  B33(Cd)]. Figs. 2(b) 
and 3(b) can be used to explain why the Cd atom 
vibrates preferentially in certain directions (where 
there are 'holes' in the atomic arrangement) and less 
in others (where atoms are in close proximity). 

Attempts to refine the anomalous-dispersion cor- 
rections in conjunction with the other parameters 
proved to be unsuccessful owing to large correlations, 
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Fig. 3. (a) The probability density function in the ( l l0)  plane for 
a Cd atom at 293 K. The harmonic contours are anisotropic 
because B, l (Cd)#  B33(Cd). (b) The atomic arrangement in the 
(110) plane. The 'primed' atoms indicate that there is one atom 
of that species 6~/2c/8 above the plane of the page and one 
6~/2c/8 below. The Cd atom which is in the plane of the page 
in the lower (or upper) row is the one in question. 
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especially between the real dispersion corrections and 
the conventional hexagonal temperature parameters. 
Similar experiences have been reported by other 
authors, e.g. Cromer, Larson & Roof (1964) for 
UMoC2. Attempts were also made to refine the disper- 
sion corrections from observed Bijvoet ratios 
(Zachariasen, 1965; Freeman, Mair & Barnea, 1977). 
Large correlations precluded the simultaneous refine- 
ment of all four dispersion corrections, but the correc- 
tions for either atomic species could be ascertained 
separately (Freeman, Mair & Barnea, 1977) and 
showed approximate agreement with the values of 
Cromer & Liberman (1970) in the case of the 
imaginary corrections. The refined values of the real 
dispersion corrections, however, showed large dis- 
crepancies with those of Cromer & Liberman (1970), 
highlighting the extreme sensitivity of these quantities 
to the quality of the data. In general, the observed 
and calculated Bijvoet ratios displayed good agree- 
ment. Indeed, of the 56 CdS Bijvoet ratios measured 
only one has the sign incorrectly determined (the 
largest calculated Bijvoet-ratio magnitude in Table 3 
being only 7.35%). 

The observed differences between time-averaged 
atomic positions and those defining the minimum of 
the potential have been shown to be significant, and 
will be larger for less highly symmetric crystals (for 
sites with the appropriate point symmetries), at higher 
temperatures and in the presence of larger anhar- 
monic effects. 

The results of this work have shown that it is 
feasible to study the effects of anharmonic thermal 
vibrations with X-rays and, indeed, the neglect of 
anharmonicity in X-ray studies requires justification. 
Further work may utilize neutron techniques which 
are particularly well suited to temperature-dependent 
studies. Synchrotron radiation and the increasing 
intensities available from y-ray sources will facilitate 
the collection of extensive sets of very accurate high- 
angle data, where anharmonic effects are greatest. 
They will also enable studies to be carried out with 
crystals of lower symmetry, where more anharmonic 
parameters are required to specify the temperature- 
factor models. High-temperature work may also 
necessitate the refinement of quartic anharmonic 
parameters (e.g. Moss, McMullan & Koetzle, 1980). 

7. Discussion 

In this paper we have shown that the anharmonicity 
of thermal vibrations can be determined from accur- 
ate X-ray intensity measurements collected with the 
wurtzite CdS at room temperature. The way in which 
the associated cubic anharmonic parameters are 
related is of considerable importance, especially for 
the determination of the u parameter. Constraining 
all the cubic anharmonic parameters to be equal in 
magnitude (model II) misrepresents tho OPP and 
leads to an erroneous value for u. The most reliable 
value of u obtained for CdS is 0-37715 (8), deter- 
mined using model III. 

In the case of a more extensive data set it is also 
possible to test the differences in the magnitudes* of 
the anharmonic parameters as predicted, for example, 
in model III by refining special groups of reflections 
[hkO reflections have structure factors which are 
independent of both ~313 and ~337; hkl reflections 
with h + 2 k = 3 m  and l=2n (where m and n are 
integers) have structure factors which are indepen- 
dent of ]3332]" Such refinements will be discussed by 
Stevenson & Barnea (1984), for CdSe. 

The results described in this paper for CdS should 
prove instructive for future studies involving other 
wurtzites, of which there are several interesting 
examples [Lawaetz (1972) lists 20 wurtzite structures; 
see also, O'Keeffe & Hyde (1978)]. 

* This phrase should be used instead of "the degree ofanisotropy" 
[last paragraph on p. 421 of Fakineos, Stevenson & Barnea's (1982) 
paper]. 
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Abstract 

A simi lar  s tudy to that  desc r ibed  in the  prev ious  
article [S tevenson ,  Mi l anko  & Barnea  (1984). Acta  

Cryst. B40, 521-530] for CdS is r epor t ed  here  for 
CdSe,  wh ich  also possesses  the h e x a g o n a l  wurtzi te  
s tructure.  In tens i ty  m e a s u r e m e n t s  have been  carr ied 
out  with an e x t e n d e d - f a c e  single crystal of  CdSe  using 
Mo K a  X- rad ia t ion  at room tempera tu re .  The  analy-  
sis o f  the  Bragg intensi t ies  reveals the p resence  of  
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significant cubic anharmonic effects. The effects of 
anharmonicity on the wurtzite position parameter u 
are descr ibed .  The d e p e n d e n c e  of  the CdS u param-  
eter on  the t empera tu re - f ac to r  m o d e l  used in the  
analysis  (S tevenson ,  Mi l anko  & Barnea,  1984) is also 
d e m o n s t r a t e d  in the  present  case for CdSe.  The  most  
rel iable  d e t e r m i n a t i o n  of  the CdSe  pos i t ion  param-  
eter, wi th  a l l owance  for cubic a n h a r m o n i c i t y ,  is 
0.37596 (4). The obse rva t ion  of  several s izable anhar-  
m o n i c  in tensi ty  ratios [Whiteley,  Moss  & Barnea  
(1978). Acta  Cryst. A34, 130-136] d e m o n s t r a t e s  the 
possibi l i ty  of  measu r ing  the a n h a r m o n i c i t y  of  t he rma l  
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